Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Transpl Infect Dis ; : e13835, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-2229451

ABSTRACT

The effect of vaccination on severity of subsequent COVID-19 in patients with hematologic malignancies (HMs) is unknown. In this single-center retrospective cohort study, we found no difference in severity of COVID-19 disease in vaccinated (n = 16) versus unvaccinated (n = 54) HM patients using an adjusted multiple logistic regression model. Recent anti-B-cell therapy was associated with more severe illness.

2.
J Clin Microbiol ; 60(7): e0026122, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1909573

ABSTRACT

Laboratory tests for the accurate and rapid identification of SARS-CoV-2 variants can potentially guide the treatment of COVID-19 patients and inform infection control and public health surveillance efforts. Here, we present the development and validation of a rapid COVID-19 variant DETECTR assay incorporating loop-mediated isothermal amplification (LAMP) followed by CRISPR-Cas12 based identification of single nucleotide polymorphism (SNP) mutations in the SARS-CoV-2 spike (S) gene. This assay targets the L452R, E484K/Q/A, and N501Y mutations, at least one of which is found in nearly all major variants. In a comparison of three different Cas12 enzymes, only the newly identified enzyme CasDx1 was able to accurately identify all targeted SNP mutations. An analysis pipeline for CRISPR-based SNP identification from 261 clinical samples yielded a SNP concordance of 97.3% and agreement of 98.9% (258 of 261) for SARS-CoV-2 lineage classification, using SARS-CoV-2 whole-genome sequencing and/or real-time RT-PCR as test comparators. We also showed that detection of the single E484A mutation was necessary and sufficient to accurately identify Omicron from other major circulating variants in patient samples. These findings demonstrate the utility of CRISPR-based DETECTR as a faster and simpler diagnostic method compared with sequencing for SARS-CoV-2 variant identification in clinical and public health laboratories.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques/methods , Humans , Mutation , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Nat Microbiol ; 7(2): 277-288, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616987

ABSTRACT

Associations between vaccine breakthrough cases and infection by different SARS coronavirus 2 (SARS-CoV-2) variants have remained largely unexplored. Here we analysed SARS-CoV-2 whole-genome sequences and viral loads from 1,373 persons with COVID-19 from the San Francisco Bay Area from 1 February to 30 June 2021, of which 125 (9.1%) were vaccine breakthrough infections. Vaccine breakthrough infections were more commonly associated with circulating antibody-resistant variants carrying ≥1 mutation associated with decreased antibody neutralization (L452R/Q, E484K/Q and/or F490S) than infections in unvaccinated individuals (78% versus 48%, P = 1.96 × 10-8). Differences in viral loads were non-significant between unvaccinated and fully vaccinated cases overall (P = 0.99) and according to lineage (P = 0.09-0.78). Symptomatic vaccine breakthrough infections had comparable viral loads (P = 0.64), whereas asymptomatic breakthrough infections had decreased viral loads (P = 0.023) compared with infections in unvaccinated individuals. In 5 cases with serial samples available for serologic analyses, vaccine breakthrough infections were found to be associated with low or undetectable neutralizing antibody levels attributable to an immunocompromised state or infection by an antibody-resistant lineage. Taken together, our results show that vaccine breakthrough infections are overrepresented by antibody-resistant SARS-CoV-2 variants, and that symptomatic breakthrough infections may be as efficient in spreading COVID-19 as unvaccinated infections, regardless of the infecting lineage.


Subject(s)
Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19 Vaccines/immunology , Cohort Studies , Female , Genome, Viral , Humans , Male , Middle Aged , Mutation , Phylogeny , San Francisco/epidemiology , Vaccination , Viral Load/statistics & numerical data , Whole Genome Sequencing , Young Adult
4.
J Am Coll Emerg Physicians Open ; 2(6): e12592, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1589125

ABSTRACT

OBJECTIVE: We sought to evaluate the test characteristics of Abbott ID-Now as a screening tool compared to polymerase chain reaction (PCR) testing for identification of COVID in an asymptomatic emergency department population. METHODS: We performed a prospective study enrolling a convenience sample of asymptomatic patients presenting to a single academic emergency department (ED) who received simultaneous testing with ID-Now and PCR per standardized ED protocols. Sensitivity, specificity, and positive and negative predictive value (PPV, NPV) of ID-Now were calculated compared to PCR. Stratified analysis by cycle threshold (Ct) values was also performed, defined as high viral load (Ct < 33) and low viral load (Ct ≥ 33). RESULTS: A total of 3121 patients were enrolled, of whom 2895 had valid results for ID-Now and PCR. COVID prevalence was 2.6%. ID-Now had a sensitivity of 85.1% (95% CI 75.9% to 92.7%) and a specificity of 99.7% (99.5% to 99.9%). PPV and NPV were high at 87.5% (83.1% to 96.1%) and 99.6% (99.3% to 99.8%). Stratified analysis by low and high Ct values demonstrated reduction in sensitivity in patients with low viral loads: 91.7% (81.6% to 97.2%) in low Ct value patients versus 58.3% (27.7% to 84.8%) in high Ct value patients. CONCLUSIONS: ID-Now had excellent performance in asymptomatic ED patients with a low rate of false positives. Cycle threshold analysis suggests a relationship between viral load and ID-Now sensitivity. Given its speed and performance in this population, ID-Now should be considered an excellent tool to support clinical decision-making in ED populations.

5.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1193254

ABSTRACT

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Humans , Mutation/genetics , Whole Genome Sequencing/methods
6.
J Infect Dis ; 223(7): 1139-1144, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1183008

ABSTRACT

We evaluated the performance of the Abbott BinaxNOW rapid antigen test for coronavirus disease 2019 (Binax-CoV2) to detect virus among persons, regardless of symptoms, at a public plaza site of ongoing community transmission. Titration with cultured severe acute respiratory syndrome coronavirus 2 yielded a human observable threshold between 1.6 × 104-4.3 × 104 viral RNA copies (cycle threshold [Ct], 30.3-28.8). Among 878 subjects tested, 3% (26 of 878) were positive by reverse-transcription polymerase chain reaction, of whom 15 of 26 had a Ct <30, indicating high viral load; of these, 40% (6 of 15) were asymptomatic. Using this Ct threshold (<30) for Binax-CoV2 evaluation, the sensitivity of Binax-CoV2 was 93.3% (95% confidence interval, 68.1%-99.8%) (14 of 15) and the specificity was 99.9% (99.4%-99.9%) (855 of 856).


Subject(s)
Antigens, Viral/isolation & purification , COVID-19 Testing/instrumentation , COVID-19/diagnosis , Point-of-Care Testing/statistics & numerical data , SARS-CoV-2/isolation & purification , Adolescent , Adult , Asymptomatic Infections , COVID-19/transmission , COVID-19/virology , COVID-19 Testing/statistics & numerical data , Female , Humans , Male , Middle Aged , RNA, Viral/isolation & purification , Reagent Kits, Diagnostic/statistics & numerical data , SARS-CoV-2/genetics , SARS-CoV-2/immunology , San Francisco , Sensitivity and Specificity , Time Factors , Viral Load , Young Adult
8.
Sci Rep ; 11(1): 3044, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1065949

ABSTRACT

The role of children in the spread of the SARS-CoV-2 coronavirus has become a matter of urgent debate as societies in the US and abroad consider how to safely reopen schools. Small studies have suggested higher viral loads in young children. Here we present a multicenter investigation on over five thousand SARS-CoV-2 cases confirmed by real-time reverse transcription (RT) PCR assay. Notably, we found no discernable difference in amount of viral nucleic acid among young children and adults.


Subject(s)
COVID-19 , Nasopharynx/virology , RNA, Viral/analysis , SARS-CoV-2 , Viral Load , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing , California/epidemiology , Child , Child, Preschool , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Young Adult
9.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: covidwho-1066793

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has emerged as the cause of a global pandemic. We used RNA sequencing to analyze 286 nasopharyngeal (NP) swab and 53 whole-blood (WB) samples from 333 patients with COVID-19 and controls. Overall, a muted immune response was observed in COVID-19 relative to other infections (influenza, other seasonal coronaviruses, and bacterial sepsis), with paradoxical down-regulation of several key differentially expressed genes. Hospitalized patients and outpatients exhibited up-regulation of interferon-associated pathways, although heightened and more robust inflammatory responses were observed in hospitalized patients with more clinically severe illness. Two-layer machine learning-based host classifiers consisting of complete (>1000 genes), medium (<100), and small (<20) gene biomarker panels identified COVID-19 disease with 85.1-86.5% accuracy when benchmarked using an independent test set. SARS-CoV-2 infection has a distinct biosignature that differs between NP swabs and WB and can be leveraged for COVID-19 diagnosis.


Subject(s)
COVID-19/diagnosis , Nasopharynx/virology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Area Under Curve , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Gene Library , Humans , Machine Learning , RNA, Viral/blood , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Transcriptome
11.
Sci Rep ; 11(1): 780, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1026832

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus motivates diverse diagnostic approaches due to the novel causative pathogen, incompletely understood clinical sequelae, and limited availability of testing resources. Given the variability in viral load across and within patients, absolute viral load quantification directly from crude lysate is important for diagnosis and surveillance. Here, we investigate the use of digital droplet PCR (ddPCR) for SARS-CoV-2 viral load measurement directly from crude lysate without nucleic acid purification. We demonstrate ddPCR accurately quantifies SARS-CoV-2 standards from purified RNA and multiple sample matrices, including commonly utilized universal transport medium (UTM). In addition, we find ddPCR functions robustly at low input viral copy numbers on nasopharyngeal swab specimens stored in UTM without upfront RNA extraction. We also show ddPCR, but not qPCR, from crude lysate shows high concordance with viral load measurements from purified RNA. Our data suggest ddPCR offers advantages to qPCR for SARS-CoV-2 detection with higher sensitivity and robustness when using crude lysate rather than purified RNA as input. More broadly, digital droplet assays provide a potential method for nucleic acid measurement and infectious disease diagnosis with limited sample processing, underscoring the utility of such techniques in laboratory medicine.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/virology , Viral Load , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/standards , Humans , Nasal Mucosa/virology , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
12.
Nat Commun ; 11(1): 4698, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-780000

ABSTRACT

Given the limited availability of serological testing to date, the seroprevalence of SARS-CoV-2-specific antibodies in different populations has remained unclear. Here, we report very low SARS-CoV-2 seroprevalence in two San Francisco Bay Area populations. Seroreactivity was 0.26% in 387 hospitalized patients admitted for non-respiratory indications and 0.1% in 1,000 blood donors in early April 2020. We additionally describe the longitudinal dynamics of immunoglobulin-G (IgG), immunoglobulin-M (IgM), and in vitro neutralizing antibody titers in COVID-19 patients. The median time to seroconversion ranged from 10.3-11.0 days for these 3 assays. Neutralizing antibodies rose in tandem with immunoglobulin titers following symptom onset, and positive percent agreement between detection of IgG and neutralizing titers was >93%. These findings emphasize the importance of using highly accurate tests for surveillance studies in low-prevalence populations, and provide evidence that seroreactivity using SARS-CoV-2 anti-nucleocapsid protein IgG and anti-spike IgM assays are generally predictive of in vitro neutralizing capacity.


Subject(s)
Antibodies, Neutralizing/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Antibodies, Viral/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , SARS-CoV-2 , San Francisco/epidemiology , Sensitivity and Specificity , Seroepidemiologic Studies , Serologic Tests/methods
13.
J Clin Microbiol ; 58(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-638997

ABSTRACT

Analytical sensitivity for SARS-CoV-2 detection is a key performance metric for the evaluation of viral detection assays. We determined analytical limits of detection for seven SARS-CoV-2 assays using serial dilutions of pooled patient material quantified with droplet digital PCR. Limits of detection ranged from ≤10 to 74 copies/ml for commercial high-throughput laboratory analyzers (Roche Cobas, Abbott m2000, and Hologic Panther Fusion) and 167 to 511 copies/ml for sample-to-answer (DiaSorin Simplexa, GenMark ePlex) and point-of-care instruments (Abbott ID NOW). The CDC assay yielded limits of detection ranging from 85 to 499 copies/ml, depending on the extraction method and thermocycler used. These results can help to inform the assay choice for testing approaches to manage the current COVID-19 outbreak.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Humans , Limit of Detection , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2
14.
Science ; 369(6503): 582-587, 2020 07 31.
Article in English | MEDLINE | ID: covidwho-591377

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, with >365,000 cases in California as of 17 July 2020. We investigated the genomic epidemiology of SARS-CoV-2 in Northern California from late January to mid-March 2020, using samples from 36 patients spanning nine counties and the Grand Princess cruise ship. Phylogenetic analyses revealed the cryptic introduction of at least seven different SARS-CoV-2 lineages into California, including epidemic WA1 strains associated with Washington state, with lack of a predominant lineage and limited transmission among communities. Lineages associated with outbreak clusters in two counties were defined by a single base substitution in the viral genome. These findings support contact tracing, social distancing, and travel restrictions to contain the spread of SARS-CoV-2 in California and other states.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genome, Viral , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , California/epidemiology , Coronavirus Infections/transmission , Epidemiological Monitoring , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Sequence Alignment , Ships , Travel , Washington
15.
Nat Biotechnol ; 38(7): 870-874, 2020 07.
Article in English | MEDLINE | ID: covidwho-74244

ABSTRACT

An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from patients in the United States, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections. Our CRISPR-based DETECTR assay provides a visual and faster alternative to the US Centers for Disease Control and Prevention SARS-CoV-2 real-time RT-PCR assay, with 95% positive predictive agreement and 100% negative predictive agreement.


Subject(s)
Betacoronavirus/isolation & purification , CRISPR-Cas Systems , Clinical Laboratory Techniques , Nucleic Acid Amplification Techniques/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Guide, Kinetoplastida/genetics , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL